精英家教网 > 高中数学 > 题目详情

AB分别是直线yxy=-x上的动点,且|AB|,设O为坐标原点,动点P满足.

(1)求点P的轨迹方程;

(2)过点(0)作两条互相垂直的直线l1l2,直线l1l2与点P的轨迹的相交弦分别为CDEF,设CDEF的弦中点分别为MN,求证:直线MN恒过一个定点.

 

1y212)见解析

【解析】(1)A(x1y1)B(x2y2)P(xy)

xx1x2yy1y2

y1x1y2=-x2?

xx1x2 (y1y2)yy1y2 (x1x2)

|AB|x22y22

P的轨迹方程为y21.

(2)证明:设C(x1y1)D(x2y2),直线l1的方程为xky.

,得(k24)y22ky10

y1y2=-x1x2.M点坐标为

同理可得N点坐标为.

直线MN的斜率kMN.

直线MN的方程为y.

整理化简得4k4y(45x)k312k2y16y(20x16)k0

xy0直线MN恒过定点

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试选择填空限时训练4练习卷(解析版) 题型:选择题

已知向量ab是夹角为60°的两个单位向量,向量aλb(λR)与向量a2b垂直,则实数λ的值为( )

A1 B.-1 C2 D0

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试选择填空限时训练1练习卷(解析版) 题型:选择题

若变量xy满足约束条件z5yx的最大值为a,最小值为b,则ab的值是( )

A48 B30

C24 D16

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题6第2课时练习卷(解析版) 题型:选择题

已知随机变量ξ服从正态分布N(2σ2),且P(ξ<4)0.8,则P(0<ξ<2)( )

A0.6 B0.4 C0.3 D0.2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题6第1课时练习卷(解析版) 题型:填空题

某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm170 cm182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题5第2课时练习卷(解析版) 题型:解答题

已知椭圆M1(ab0)的短半轴长b1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为64.

(1)求椭圆M的方程;

(2)设直线lxmyt与椭圆M交于AB两点,若以AB为直径的圆经过椭圆的右顶点C,求t的值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题5第2课时练习卷(解析版) 题型:选择题

已知P为双曲线C1上的点,点M满足| |1,且·0,则当| |取得最小值时的点P到双曲线C的渐近线的距离为( )

A. B. C4 D5

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷(解析版) 题型:解答题

如图,在四棱锥PABCD中,平面PAD平面ABCDABDCPAD是等边三角形,已知AD4BD4AB2CD8.

(1)MPC上的一点,证明:平面MBD平面PAD

(2)M点位于线段PC什么位置时,PA平面MBD?

(3)求四棱锥PABCD的体积.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题3第2课时练习卷(解析版) 题型:选择题

已知等差数列{an}的前n项和为Sna415S555,则数列{an}的公差是( )

A B4 C.-4 D.-3

 

查看答案和解析>>

同步练习册答案