精英家教网 > 高中数学 > 题目详情
10.(理)在${({2x+\frac{1}{x^2}})^6}$的展开式中,常数项等于240.(结果用数值表示)

分析 利用通项公式即可得出.

解答 解:在${({2x+\frac{1}{x^2}})^6}$的展开式中,Tr+1=${∁}_{6}^{r}(2x)^{6-r}$$(\frac{1}{{x}^{2}})^{r}$=26-r${∁}_{6}^{r}$x6-3r,令6-3r=0,解得r=2.
∴常数项=${2}^{4}×{∁}_{6}^{2}$=240.
故答案为:240.

点评 本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin2x的图象向左平移φ(0<φ<π)个单位后,所对应函数在区间$[\frac{π}{3},\frac{5π}{6}]$上单调递减,则实数φ的值是(  )
A.$\frac{11π}{12}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若按如图的算法流程图运行,输入的N的值为5,则输出S值为(  )
A.4B.$\frac{5}{6}$C.$\frac{4}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司的某种儿童玩具的成本为40元,出厂单价为60元,经市场调研后作出调整,若经销商一次订购量超过100个时,每多订购1个,则每个玩具的出厂单价就降低0.02元,但不能低于50元.
(1)当一次订购量为多少时,每个玩具的实际出厂单价恰好为50元?
(2)若一次订购量为x个时,每个玩具的实际出厂单价恰好为w元,写出函数w=f(x)的表达式;并求出当某经销商一次订购500个玩具时,该公司获得的利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC是边长为2的等边三角形,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是(  )
A.(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$B.|$\overrightarrow{b}$|=1C.$\overrightarrow{a}$•$\overrightarrow{b}$=1D.$\overrightarrow{a}$⊥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC,角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$,点P(1+cos α,sin α),参数α∈[0,2π).
(1)求点P轨迹的直角坐标方程 
(2)求点P到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$f(\sqrt{x}-1)=x-\sqrt{x}$,则f(x)=x2+x(x≥-1).

查看答案和解析>>

同步练习册答案