精英家教网 > 高中数学 > 题目详情

已知函数,其中.

(Ⅰ)当=1时,求在(1,)的切线方程

(Ⅱ)当时,,求实数的取值范围。

 

【答案】

(Ⅰ);(Ⅱ) 的取值范围为(-∞,0].

【解析】

试题分析:(Ⅰ)当=1时,,∴==,∴在(1,)的切线斜率=,∴在(1,)的切线方程为;(Ⅱ) 时,≥0,则在[0,+∞)上是增函数,∴当时,=0,适合;分当时,≤0,则≤0,则在[0,+∞)上是减函数,∴当时,=0,不适合;当时,1>>0,则,当∈[0, ]时,≥0,当∈[,+∞)时,≤0,∴在[0, ]是增函数,在[,+∞)是减函数,当时,<0,故不适合,∴的取值范围为(-∞,0].

考点:本题主要考查导数的几何意义,直线方程,应用导数研究函数的单调性及极值。

点评:典型题,本题属于导数应用中的基本问题,切线斜率,等于函数在切点的导函数值。(2)涉及时,成立,通过研究函数的单调性,明确了函数值取到最小值的情况,确定得到a的范围。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

⒗ 已知函数,其中为实数,且处取得的极值为

⑴求的表达式;

⑵若处的切线方程。

  

查看答案和解析>>

科目:高中数学 来源:2013-2014学年北京市西城区高三上学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数,其中是自然对数的底数,.

函数的单调区间

时,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海黄浦区高三上学期期末考试(即一模)文数学卷(解析版) 题型:解答题

已知函数(其中是实数常数,

(1)若,函数的图像关于点(—1,3)成中心对称,求的值;

(2)若函数满足条件(1),且对任意,总有,求的取值范围;

(3)若b=0,函数是奇函数,,且对任意时,不等式恒成立,求负实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西省高二上学期期末考试理科数学试卷(解析版) 题型:选择题

已知函数(其中)的图象如图(上)所示,则函数的图象是(  )                                                    

 

查看答案和解析>>

同步练习册答案