【题目】已知函数
若
在区间
上的最大值为
,求它在该区间上的最小值.
科目:高中数学 来源: 题型:
【题目】“北祠堂”是我校著名的一支学生乐队,对于2015年我校“校园周末文艺广场”活动中“北祠堂”乐队的表现,在高一年级学生中投票情况的统计结果见表:
喜爱程度 | 非常喜欢 | 一般 | 不喜欢 |
人数 | 500 | 200 | 100 |
现采用分层抽样的方法从所有参与对“北祠堂”投票的800名学生中抽取一个容量为n的样本,若从不喜欢“北祠堂”的100名学生中抽取的人数是5人.
(1)求n的值;
(2)若从不喜欢“北祠堂”的学生中抽取的5人中恰有3名男生(记为a1 , a2 , a3)2名女生(记为b1 , b2),现将此5人看成一个总体,从中随机选出2人,列出所有可能的结果;
(3)在(2)的条件下,求选出的2人中至少有1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于
维向量
,若对任意
均有
或
,则称
为
维
向量. 对于两个
维
向量
定义
.
(1)若
, 求
的值;
(2)现有一个
维
向量序列:
若
且满足:
,求证:该序列中不存在
维
向量
.
(3) 现有一个
维
向量序列:
若
且满足:
,若存在正整数
使得
为
维
向量序列中的项,求出所有的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn=2n2 , {bn}为等比数列,且a1=b1 , b2(a2﹣a1)=b1 .
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别是a、b、c满足:cosAcosC+sinAsinC+cosB=
,且a,b,c成等比数列,
(1)求角B的大小;
(2)若
+
=
,a=2,求三角形ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com