精英家教网 > 高中数学 > 题目详情
10.已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:
(1)求证:AB⊥CD;
(2)求棱锥A-BCD的表面积.

分析 (1)由已知条件求出∠ADB=45°,从而得到AB⊥BD,利用平面ABD⊥平面BCD,由此能够证明AB⊥DC.
(Ⅱ)利用侧面积加底面积可得棱锥A-BCD的表面积.

解答 (1)证明:在△ABD中,∵AB=1,BD=1,且∠A=45°
∴∠ADB=45°,
∴AB⊥BD,
∴平面ABD⊥平面BCD,面ABD∩面BDC=BD,∴AB⊥面BDC,
∴AB⊥DC;
(2)解:由(1)可知,AB⊥BC,AD⊥CD,
∴棱锥A-BCD的表面积=$\frac{1}{2}×1×\sqrt{2}$×2+$\frac{1}{2}×1×1×2$=$\sqrt{2}$+1.

点评 本题考查异面直线垂直的证明,考查棱锥A-BCD的表面积,考查学生分析解决问题的能力,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在等差数列{an}中,Sn为其前n项和,已知a6=S6=-3;数列{bn}满足:bn+1=2bn,b2+b4=20.
(1)求数列{an}和{bn}的通项公式;
(2)设${c_n}={2^{a_n}}$,求数列{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=loga(x+1)(a>0,a≠1)
(1)当a>1时,证明:?x1,x2∈(-1,+∞),x1≠x2,有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$;
(2)若曲线y=f(x)有经过点(0,1)的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A(2,0),B(-2,-4),直线l:x-2y+8=0上有一动点P,则|PA|+|PB|的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若全集U={x|x2≤4},A={x|-2≤x≤0},则∁UA=(  )
A.(0,2)B.[0,2)C.(0,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=f(x)=ax2+bx+c(x∈R)的部分对应如表:
x-4-3-2-10123
y60-4-6-6-406
则关于x的不等式f(x)≤0的解集为[-3,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算sin150°+2cos240°+3tan315°后,所得结果的值为-3.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,2-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则a=$1±\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,已知cos2B+cos2C=1+cos2A,且sinA=2sinBcosC,求证:b=c且A=90°.

查看答案和解析>>

同步练习册答案