分析 (1)由已知条件求出∠ADB=45°,从而得到AB⊥BD,利用平面ABD⊥平面BCD,由此能够证明AB⊥DC.
(Ⅱ)利用侧面积加底面积可得棱锥A-BCD的表面积.
解答 (1)证明:在△ABD中,∵AB=1,BD=1,且∠A=45°
∴∠ADB=45°,
∴AB⊥BD,
∴平面ABD⊥平面BCD,面ABD∩面BDC=BD,∴AB⊥面BDC,
∴AB⊥DC;
(2)解:由(1)可知,AB⊥BC,AD⊥CD,
∴棱锥A-BCD的表面积=$\frac{1}{2}×1×\sqrt{2}$×2+$\frac{1}{2}×1×1×2$=$\sqrt{2}$+1.
点评 本题考查异面直线垂直的证明,考查棱锥A-BCD的表面积,考查学生分析解决问题的能力,属于中档题..
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| y | 6 | 0 | -4 | -6 | -6 | -4 | 0 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com