精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-ax+1在区间[2,+∞)内是增函数,则实数a的取值范围是(  )
A、a≤12B、a<12
C、a≥12D、a>12
考点:利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:函数f(x)=x3-ax+1在区间[2,+∞)上单调递增?f′(x)≥0恒成立,x∈[2,+∞),再分离参数即可得出.
解答: 解:∵函数f(x)=x3-ax+1在区间[2,+∞)上单调递增,
∴f′(x)=3x2-a≥0,即a≤3x2在区间[2,+∞)上恒成立,
而3x2在区间[2,+∞)上的最小值为12.
∴实数a的取值范围是(-∞,12].
故选A.
点评:熟练掌握函数导数与单调性的关系及其分离参数法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1是椭圆x2+
y2
4
=1的下焦点,O为坐标原点,点P在椭圆上,则
PF1
PO
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
16
+
y2
9
=1的两焦点,过点F2的直线交椭圆于点A,B,若|AB|=1,则|AF1|-|BF2|=(  )
A、7B、8C、13D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列关于点P,直线l、m与平面α、β的命题中,正确的是(  )
A、若m⊥α,l⊥m,则l∥α
B、若α⊥β,α∩β=m,P∈α,P∈l,且l⊥m,则l⊥β
C、若l,m是异面直线,m?α,m∥β,l?β,l∥α,则α∥β
D、若α⊥β,且l⊥β,m⊥l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件 
x+y≥1
x-2y≥-2
3x-2y≤3
,若x2+y2≥a恒成立,则实数a的最大值为(  )
A、
53
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数C1:y=logax,C2=y=logbx,C3:y=logcx,C4:y=logdx在同一平面直角坐标系中的图象如图所示,其中a、b、c、d均为不等于1的整数,则a、b、c、d、1按从大到小的顺序为
 
(用“<”号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC•AE=DC•AF,B,E,F,C四点共圆.
(Ⅰ)证明:CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列3,7,13,21,31,…的一个通项公式是(  )
A、an=4n-1
B、an=n2+n+1
C、an=2+2n-n2
D、an=n(n2-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
(Ⅰ)|x+1|<|2x+3|;
(Ⅱ)
x-2
x+3
≥2.

查看答案和解析>>

同步练习册答案