精英家教网 > 高中数学 > 题目详情
将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.
甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、…、9中每一个值,使不等式成立,则共有45种;当b=6时,a可取3、4…、9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲有大小相同的两张卡片,标有数字2、3;乙有大小相同的卡片四张,分别标有1、2、3、4.
(1)求乙随机抽取的两张卡片的数字之和为奇数的概率;
(2)甲、乙分别取出一张卡,比较数字,数字大者获胜,求乙获胜的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中装有编号为的球个,编号为的球个,这些球的大小完全一样。
(1)从中任意取出四个,求剩下的四个球都是号球的概率;
(2)从中任意取出三个,记为这三个球的编号之和,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某项选拔共有两轮考核,当第一轮考核合格方可进入第二轮考核,第一轮考核不合格则被淘汰,如果进入第二轮考核并考核合格,则选拔成功,且两轮考核相互独立.已知甲、乙两位选手第一轮考核合格的概率依次为0.6、0.8,第二轮考核合格的概率依次0.5、0.6.
(Ⅰ)求甲、乙两位选手在第一轮考核中只有甲合格的概率;
(Ⅱ)求甲、乙两位选手至少有一人选拔成功的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三个人乘同一列火车,火车有10节车厢,则至少有2人上了同一车厢的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

投掷一枚质地均匀的正方体骰子两次,第一次出现向上的点数为a,第二次出现向上的点数为b,直线l1的方程为ax-by-3=0,直线l2的方程为x-2y-2=0,则直线l1与直线l2有交点的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续投掷两次骰子得到的点数分别为m,n,向量a=(m,n)与向量b=(1,0)的夹角记为α,则α∈(0,)的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,那么
(1)甲抽到选择题,乙抽到判断题的概率是多少?
(2)甲、乙二人中至少有一个抽到选择题的概率是多少?

查看答案和解析>>

同步练习册答案