精英家教网 > 高中数学 > 题目详情
计算下列各题
(1)52log53+log432-log3(log28)-
log23
log29

(2)lg500+lg
8
5
-
1
2
lg64+50(lg2+lg5)2
考点:对数的运算性质
专题:函数的性质及应用
分析:根据对数的运算法则和性质即可得到结论.
解答: 解:(1)原式=3+
log232
log24
-log33-
log23
2log23
=3+
5
2
-1-
1
2
=0,
 (2)原式=lg800-lg8+50=lg100+50=2+50=52.
点评:本题主要考查对数的基本运算,利用对数的基本运算法则是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两条直线ax+y+1=0与3x-2y+1=0垂直,则a的值为(  )
A、
2
3
B、
3
2
C、-
2
3
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点.
(1)求p的值;
(2)若直线AB与x轴交于点Q(-1,0),且|QA|=2|QB|,求直线AB的斜率;
(3)若AB的垂直平分线l与x轴交于点C,且|AF|+|BF|=8,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式(m-1)x2-2x+1≥0
(1)若不等式对任意实数x恒成立,求实数m的取值范围;
(2)若不等式对任意x∈[2,4]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-
1
x
)-2lnx,a∈R.
(1)若a=1,判断函数f(x)是否存在极值,若存在,求出极值;若不存在,说明理由;
(2)求函数f(x)的单调区间;
(3)设函数g(x)=-
a
x
.若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||x-a|≤2},B={x|
2x+6
x+2
>1}.
(Ⅰ)求集合A和集合B;
(Ⅱ)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-(a+2)x2+2(a-1)x(a∈R).
(Ⅰ) 若函数y=f(x)在x=-1处的切线方程为4x-y+5=0,求实数a的值.
(Ⅱ)当x∈[0,3]时,不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.
(Ⅰ)根据图中的数据信息,求出众数x0
(Ⅱ)小明的父亲上班离家的时间y在上午7:00至7:30之间,而送报人每天在x0时刻前后半小时内把报纸送达(每个时间点送达的可能性相等):
①求小明的父亲在上班离家前能收到报纸(称为事件A)的概率;
②求小明的父亲周一至周五在上班离家前能收到报纸的天数X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a-2)x+a-3,若函数y=|f(x)|在x∈(2,3)单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案