精英家教网 > 高中数学 > 题目详情
已知集合M={x|2x2-(2a+1)x+a>0,a>
1
2
},集合N={x|?t∈R,使得t2+t+1≤x成立},若x∈N是x∈M的充分不必要条件,求实数a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:分别求出集合M,N成立的等价条件,利用充分不必要条件的定义即可得到结论.
解答: 解:∵2x2-(2a+1)x+a>0,
∴(x-a)(2x-1)>0,
∵a>
1
2

∴不等式的解为x>a或x<
1
2

即M={x|x>a或x<
1
2
}.
∵t2+t+1=(t+
1
2
2+
3
4
3
4

∴若?t∈R,使得t2+t+1≤x成立,
则x≥
3
4

即N={x|x≥
3
4
}.
若x∈N是x∈M的充分不必要条件,
则N?M,
1
2
a<
3
4

∴实数a的取值范围是
1
2
a<
3
4
点评:本题主要考查充分条件和必要条件的应用,利用不等式的性质求出M,N的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,H是正方形AA1B1B的中心,AA1=2
2
,C1H⊥平面AA1B1B,且C1H=
5

(Ⅰ)求异面直线AC与A1B1所成角的余弦值;
(Ⅱ)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x2-
1
x
)n
的展开式中含x的项为第6项,且(1-x+2x2)n=a0+a1x+a2x2+…+a2nx2n
(1)求n的值;
(2)求a1+a2+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
5
,且α是第一象限角.
(1)求cosα的值;
(2)求tan(α+π)+
sin(
2
-α)
cos(π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x-2
的定义域为集合A,函数g(x)=lg(
3
x
-1)
的定义域为集合B,已知p:x∈A∩B;q:x满足2x+m<0,且若p则q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=12x,点M(a,0),过M的直线l交抛物线C于A,B两点.
(Ⅰ)若a=1,抛物线C的焦点与AB中点的连线垂直于x轴,求直线l的方程;
(Ⅱ)设a为小于零的常数,点A关于x轴的对称点为A′,求证:直线A′B过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,E为线段BC的中点,AB=1,AD=2,AA1=
2

(Ⅰ)证明:DE⊥平面A1AE;
(Ⅱ)求点A到平面A1ED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(Ⅰ)“抛物线三角形”一定是
 
三角形(提示:在答题卡上作答);
(Ⅱ)若抛物线m:y=a(x-2)2+b(a>0,b<0)的“抛物线三角形”是直角三角形,求a,b满足的关系式;
(Ⅲ)如图,△OAB是抛物线n:y=-x2+tx(t>0)的“抛物线三角形”,是
否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(a,0),对于抛物线y2=2x上任一点Q,都有|PQ|≥|a|,则实数a的取值范围
 

查看答案和解析>>

同步练习册答案