分析 (1)过点E作EH∥BD,交CD于点H,连结HF,推导出平面EHF∥平面ABD,由此能证明EF∥平面ABD.
(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F-BD-O的余弦值.
解答 证明:(1)过点E作EH∥BD,交CD于点H,连结HF,![]()
则H为CD中点,∴HF∥AD
∵AD?平面ABD,HF?平面ABD,
∴HF∥平面ABD,
同理,EH∥平面ABD,
∵EH∩HF=H,∴平面EHF∥平面ABD,
∵EF?平面EHF,∴EF∥平面ABD.![]()
解:(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,
连结BF,∵θ=$\frac{π}{3}$,OB=2,OF=1,∴BF⊥AO,
以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,
则F(0,0,0),B(0,0,$\sqrt{3}$),D(-1,2,0),O(1,0,0),
设平面FBD的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{FB}=\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{FD}=-x+2y=0}\end{array}\right.$,取x=2,解得$\overrightarrow{m}$=(2,-1,0)
同理得平面BDO的一个法向量$\overrightarrow{n}$=($\sqrt{3},\sqrt{3}$,1),
设二面角F-BD-O的平面角为α,
cosα=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{3}}{\sqrt{5}•\sqrt{7}}$=$\frac{3\sqrt{105}}{35}$,
∴二面角F-BD-O的余弦值为$\frac{3\sqrt{105}}{35}$.
点评 本题考查空间直线与增面的位置关系、空间角、数学建模,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 672 | B. | 673 | C. | 1345 | D. | 3025 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | 2$\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 2$\sqrt{3}$±3 | D. | 2$\sqrt{3}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 4$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com