精英家教网 > 高中数学 > 题目详情
12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点分别为F1,F2,且经过点$P({0,\sqrt{5}})$,离心率为$\frac{2}{3}$,A为直线x=4上的动点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点B在椭圆C上,满足OA⊥OB,求线段AB长度的最小值.

分析 (Ⅰ)列出$\left\{\begin{array}{l}b=\sqrt{5}\\ e=\frac{c}{a}=\frac{2}{3}\\{a^2}={b^2}+{c^2}.\end{array}\right.$,然后求解椭圆方程.
(Ⅱ)点B在椭圆C上,设B(m,n),$n∈[{-\sqrt{5},0})∪({0,\sqrt{5}}]$,A(4,y).通过$\overrightarrow{OA}•\overrightarrow{OB}=0$,得到4m+ny=0.求出|AB|2的表达式,通过设t=n2,t∈(0,5],利用函数的导数求解函数的最小值.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}b=\sqrt{5}\\ e=\frac{c}{a}=\frac{2}{3}\\{a^2}={b^2}+{c^2}.\end{array}\right.$解得$\left\{\begin{array}{l}a=3\\ c=2.\end{array}\right.$,可得a=3,b=$\sqrt{5}$.
所以椭圆C的方程为$\frac{x^2}{9}+\frac{y^2}{5}=1$.
(Ⅱ)点B在椭圆C上,设B(m,n),$n∈[{-\sqrt{5},0})∪({0,\sqrt{5}}]$,A(4,y).
因为OA⊥OB,所以$\overrightarrow{OA}•\overrightarrow{OB}=0$,即4m+ny=0.
因为点B在椭圆C上,所以$\frac{m^2}{9}+\frac{n^2}{5}=1$,
所以|AB|2=(m-4)2+(n-y)2=m2-8m+16+n2-2ny+y2=m2-8m+16+n2+8m+y2
=m2+16+n2+y2
=${m^2}+16+{n^2}+{({\frac{-4m}{n}})^2}$
=$9({1-\frac{n^2}{5}})+16+{n^2}+\frac{{16×9({1-\frac{n^2}{5}})}}{n^2}$,
=$\frac{144}{n^2}-\frac{{4{n^2}}}{5}-\frac{19}{5}$
设t=n2,t∈(0,5]
设$g(t)=\frac{144}{t}-\frac{4t}{5}-\frac{19}{5}$.
因为${g^'}(t)=\frac{-144}{t^2}-\frac{4}{5}<0$,
所以g(t)在(0,5]上单调递减.
所以当t=5,即$n=±\sqrt{5}$时,${|{AB}|_{min}}=\sqrt{21}$.

点评 本题考查椭圆的简单性质的应用,椭圆方程的求法,直线与椭圆的位置关系的综合应用,函数的导数求解函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点

(1)求证:EF∥平面ABD
(2)若θ=$\frac{π}{3}$,求二面角F-BD-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆x2+y2=1与直线$\left\{\begin{array}{l}{x=a+t}\\{y=2t}\end{array}\right.$(参数t∈R)相切,则实数a=±$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.
(Ⅰ)证明:DE⊥平面PBC;
(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知AD=2,$CD=\sqrt{2}$,求二面角F-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在数列{an}种,a1=1,${a_{n+1}}={({-1})^n}({{a_n}+1})$,记Sn为{an}的前n项和,则S2017=-1007.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},集合B={1,4,7},则集合(∁UA)∩B=(  )
A.{4}B.{1,2,4,6,7}C.{3,5}D.{1,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的前n项和Sn满足${S_n}={n^2}({n∈{N^*}})$,记数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为Tn,则T2017=(  )
A.$\frac{4034}{4035}$B.$\frac{2017}{4035}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{b}$|等于(  )
A.6B.6$\sqrt{3}$C.12D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线M的实轴长为2,且它的一条渐近线方程为y=2x,则双曲线M的标准方程可能是(  )
A.x2-4y2=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{64}$=1C.$\frac{{y}^{2}}{4}$-x2=1D.y2-4x2=1

查看答案和解析>>

同步练习册答案