精英家教网 > 高中数学 > 题目详情
17.若全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},集合B={1,4,7},则集合(∁UA)∩B=(  )
A.{4}B.{1,2,4,6,7}C.{3,5}D.{1,7}

分析 直接利用交、并、补集的混合运算得答案.

解答 解:由U={1,2,3,4,5,6,7},A={1,3,5,7},得∁UA={2,4,6},
又B={1,4,7},∴(∁UA)∩B={4}.
故选:A.

点评 本题考查交、并、补集的混合运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.对于三次函数f(x)=ax3+bx2+cx+d(a≠0)给出定义:设f′(x)是函数y=f(x)的导数,f''(x)是f′(x)的导数.若方程f''(x)=0有实数解x0,则该点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$
请你根据这一发现,
(1)求函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$的对称中心;
(2)计算$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{2016}{2017})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个不相等的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,两组向量均由$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2个$\overrightarrow{a}$和2个$\overrightarrow{b}$排列而成,记S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,Smin表示S所有可能取值中的最小值,则下列命题中正确的个数为(  )
①S有3个不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{b}$|无关;
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则Smin与|$\overrightarrow{b}$|无关;
④若|$\overrightarrow{b}$|=2|$\overrightarrow{a}$,Smin=4${|\overrightarrow{a}|}^{2}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)满足f(x+3)=3f(x),当x∈(0,3)时$f(x)=lnx-ax({a>\frac{1}{3}})$,当x∈(-6,-3)时f(x)的最大值为$-\frac{1}{9}$,则实数a的值等于(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点分别为F1,F2,且经过点$P({0,\sqrt{5}})$,离心率为$\frac{2}{3}$,A为直线x=4上的动点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点B在椭圆C上,满足OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为500尺,则需要几天时间才能打穿(结果取整数)(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow{b}$=(x,3$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设△ABC的内角A,B,C的对边分别为a,b,c,若c=2$\sqrt{3}$,sinB=2sinA.
(1)若C=$\frac{π}{3}$,求a,b的值;
(2)若cosC=$\frac{1}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不超过实数x的最大整数称为x的整数部分,记作[x],已知f(x)=cos([x]-x),给出下列结论:
①f(x)是偶函数;
②f(x)是周期函数,且最小正周期为π;
③f(x)的单调递减区间为[k,k+1)(k∈Z);
④f(x)的值域为[cos1,1].
其中正确的结论是(  )
A.B.①③C.③④D.②③

查看答案和解析>>

同步练习册答案