精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-$\sqrt{3}$),$\overrightarrow{b}$=(x,3$\sqrt{3}$),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则x=1.

分析 利用向量的坐标运算性质、向量垂直与数量积的关系即可得出.

解答 解:2$\overrightarrow{a}$+$\overrightarrow{b}$=(2+x,$\sqrt{3}$),
∵(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=2+x-3=0,解得x=1.
故答案为:1.

点评 本题考查了向量的坐标运算性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.图1是随机抽取的15户居民月均用水量(单位:t)的茎叶图,月均用水量依次记为A1、A2、…A15,图2是统计茎叶图中月均用水量在一定范围内的频数的一个程序框图,那么输出的结果n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.
(Ⅰ)证明:DE⊥平面PBC;
(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知AD=2,$CD=\sqrt{2}$,求二面角F-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},集合B={1,4,7},则集合(∁UA)∩B=(  )
A.{4}B.{1,2,4,6,7}C.{3,5}D.{1,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的前n项和Sn满足${S_n}={n^2}({n∈{N^*}})$,记数列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n项和为Tn,则T2017=(  )
A.$\frac{4034}{4035}$B.$\frac{2017}{4035}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.长沙梅溪湖步步高购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取n张进行统计,将结果分成6组,分别是:[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如下所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).
(1)若在消费金额为[400,600]元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.
方案一:全场商品打八折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,$\overrightarrow{a}$⊥(3$\overrightarrow{a}$-$\overrightarrow{b}$),则|$\overrightarrow{b}$|等于(  )
A.6B.6$\sqrt{3}$C.12D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{ax-1},x≥0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$,若f(f(-2))=3,则a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a1+3a8+a15=60,则2a${\;}_{{9}_{\;}}$-a10的值为(  )
A.6B.8C.12D.13

查看答案和解析>>

同步练习册答案