精英家教网 > 高中数学 > 题目详情

将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在
下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是
(Ⅰ)求小球落入袋中的概率
(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中的小球个数,试求的概率和的数学期望

(Ⅰ)
(Ⅱ)

解析试题分析:(Ⅰ)记“小球落入袋中”为事件,“小球落入袋中”为事件,则事件的对立事件为,而小球落入袋中当且仅当小球一直向左落下或一直向右落下,故

从而;                5分
(Ⅱ)显然,随机变量,故

.                             13分
考点:本题主要考查互斥事件概率的加法公式,对立事件概率计算公式,二项分布。
点评:中档题,统计中的抽样方法,频率直方图,平均数、方差计算,概率计算及分布列问题,是高考必考内容及题型。古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。概率的计算方法及公式要牢记。利用对立事件概率计算公式,往往看简化解题过程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙两个同学同时报名参加某重点高校2010年自主招生,高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格。已知甲,乙两人审核过关的概率分别为,审核过关后,甲、乙两人文化测试合格的概率分别为
(1)求甲,乙两人至少有一人通过审核的概率;
(2)设表示甲,乙两人中获得自主招生入选资格的人数,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合  计
男   生
 
6
 
女   生
10
 
 
合   计
 
 
48
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望。
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某国际高端经济论坛上,前六位发言的是与会的含有甲、乙的6名中国经济学专家,他们的发言顺序通过随机抽签方式决定.
(Ⅰ)求甲、乙两位专家恰好排在前两位出场的概率;
(Ⅱ)发言中甲、乙两位专家之间的中国专家数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市一公交线路某区间内共设置六个公交站点(如图所示),分别为,现在甲、乙两人同时从站上车,且他们中的每个人在站点下车是等可能。

求(1)甲在站点下车的概率
(2)甲、乙两人不在同一站点下车的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解《中华人民共国道路交通安全法》在学生中的普及情况,调查部门对某学校6名学生进行问卷调查,6人得分情况如下:
5,6,7,8,9,10。
把这6名学生的得分看成一个总体。
(1)求该总体的平均数;
(2)求该总体的的方差;
(3)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,求该样本平均数于总体平均数之差的绝对值不超过0.5的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)

30
25

10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(1)确定的值,并求顾客一次购物的结算时间的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个口袋中有红球3个,白球4个.
(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求恰好第2次中奖的概率;
(Ⅱ)从中有放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某项计算机考试按科目A、科目B依次进行,只有大拿感科目A成绩合格时,才可继续参加科目B的考试,已知每个科目只允许有一次补考机会,两个科目均合格方快获得证书,现某人参加这项考试,科目A每次考试成绩合格的概率为,科目B每次考试合格的概率为,假设各次考试合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这次考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求随即变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案