已知函数
,
,其中
.
(1)若
是函数
的极值点,求实数
的值;
(2)若对任意的
(
为自然对数的底数)都有
成立,求实数
的取值范围.
(1)
;(2)
.
解析试题分析:(1)由连续可导函数在极值点处的导数为0求出
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
(本小题满分共12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知
科目:高中数学
来源:
题型:解答题
已知
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
的值,再验证充分性即可,这里容易忘记验证充分性,一定要注意连续可导函数在某点处导数为0,只是在该处取得极值的必要条件,而非充要条件;(2)条件等价转化为
,然后以导数为工具,求出分别求出
,通过解不等式可得实数
的取值范围,注意分类讨论.本小题要注意是
两个相互独立的变量,没有约束关系,所能转化为
, 若题目改为“若对任意的
都有
≥
成立”,则可考虑转化为
成立去解答.
试题解析:(1)解法1:∵
,其定义域为
, 1分
∴
.3分
∵
是函数
的极值点,∴
,即
.
∵
,∴
.
经检验当
时,
是函数
的极值点,∴
. 5分
解法2:∵
,其定义域为
,
∴
. 令
,即
,整理,得
.
∵
,
∴
的两个实根
(舍去),
,
当
变化时,
,
的变化情况如下表:![]()
![]()
![]()
![]()
![]()
— 0 + ![]()
![]()
极小值 ![]()
![]()
![]()
新中考系列答案
新中考先锋系列答案
冲刺全真模拟试题经典10套题系列答案
中考1对1全程精讲导练系列答案
中考备考全攻略系列答案
中考一卷通系列答案
指南针神州中考系列答案
中考冲刺系列答案
中考特训营真题分类集训系列答案
中考先锋系列答案
(m为常数,e=2.71828…是自然对数的底数),函数
的最小值为1,其中
是函数f(x)的导数.
(1)求m的值.
(2)判断直线y=e是否为曲线f(x)的切线,若是,试求出切点坐标和函数f(x)的单调区间;若不是,请说明理由.
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围。
,
为函数
的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是
,求
的值;
(2)若函数
,求函数
的单调区间.
,![]()
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)若
在
处有极值,求
的单调递增区间;
(Ⅲ)是否存在实数
,使
在区间
的最小值是3,若存在,求出
的值;若不存在,说明理由.
是实数,函数
,
和
,分别是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致.
(Ⅰ)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(Ⅱ)设
且
,若函数
和
在以
为端点的开区间上单调性一致,求
的最大值.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号