精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,三棱柱中,侧面为菱形,.

(Ⅰ)证明:;
(Ⅱ)若,,求二面角的余弦值.
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)由侧面为菱形得,结合平面,故,且的中点.故垂直平分线段,则;(Ⅱ)求二面角大小,可考虑借助空间直角坐标系.故结合已知条件寻找三条两两垂直相交的直线是解题关键.当时,三角形为等腰直角三角形,故,结合已知条件可判断,故,从而两两垂直.故以为坐标原点,的方向为轴正方向建立空间直角坐标系,用坐标表示相关点的坐标.分别求半平面的法向量,将求二面角问题转化为求法向量夹角处理.
试题解析:(I)连接,交,连接.因为侧面为菱形,所以,且的中点.又,所以平面,故.又,故
(II)因为,且的中点,所以,又因为.故,从而两两垂直.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.因为,所以为等边三角形.又,则
,,
是平面的法向量,则所以可取
是平面的法向量,则同理可取
.所以二面角的余弦值为

【考点定位】1、直线和平面垂直的判定和性质;2、二面角求法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为梯形,,且.(10分)

(1)求证:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧面为菱形,的中点为,且平面.

证明:
,求三棱柱的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平行四边形中,.将沿折起,使得平面平面,如图.

(1)求证:
(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体是由底面为的长方体被截面所截而得到的,其中
(1)求
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个命题中,正确命题的个数是(    )个
① 若平面平面,直线平面,则
② 若平面平面,且平面平面,则
③平面平面,且,点,若直线,则
④直线为异面直线,且平面平面,若,则.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2012·安徽高考]设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则(  )
A.平面α与平面β垂直
B.平面α与平面β所成的(锐)二面角为45°
C.平面α与平面β平行
D.平面α与平面β所成的(锐)二面角为60°

查看答案和解析>>

同步练习册答案