精英家教网 > 高中数学 > 题目详情
如图,三棱柱中,侧面为菱形,的中点为,且平面.

证明:
,求三棱柱的高.
(1)详见解析;(2)三棱柱的高为.

试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结,则O为的交点,又因为侧面为菱形,对角线相互垂直;又平面,所以,根据线面垂直的判定定理可得:平面ABO,结合线面垂直的性质:由于平面ABO,故;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O到平面ABC的距离,即:作,垂足为D,连结AD,作,垂足为H,则由线面垂直的判定定理可得平面ABC,再根据三角形面积相等: ,可求出的长度,最后由三棱柱的高为此距离的两倍即可确定出高.
试题解析:(1)连结,则O为的交点.
因为侧面为菱形,所以.
平面,所以
平面ABO.
由于平面ABO,故.

(2)作,垂足为D,连结AD,作,垂足为H.
由于,,故平面AOD,所以
,所以平面ABC.
因为,所以为等边三角形,又,可得.
由于,所以,
,且,得
又O为的中点,所以点到平面ABC的距离为.
故三棱柱的高为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面,底面是边长为的正三角形,其重心为点,是线段上一点,且

(1)求证:侧面
(2)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱中,侧面为菱形,.

(Ⅰ)证明:;
(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,分别是棱的中点.
(1)证明平面
(2)若二面角P-AD-B为
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方形中,, ,的中点.将沿折起,使得平面平面
(1)求证:; 
(2)若点是线段的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱中,底面边长为,侧棱长为4,点分别为棱的中点,,求点到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l,m是两条不同的直线,α是一个平面,则下列命题正确的个数为________.
①若l⊥m,m?α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.

查看答案和解析>>

同步练习册答案