精英家教网 > 高中数学 > 题目详情
设l,m是两条不同的直线,α是一个平面,则下列命题正确的个数为________.
①若l⊥m,m?α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.
1
对于①,由l⊥m及m?α,可知l与α的位置关系有平行、相交或在平面内三种,故①不正确.②正确.对于③,由l∥α,m?α知,l与m的位置关系为平行或异面,故③不正确.对于④,由l∥α,m∥α知,l与m的位置关系为平行、异面或相交,故④不正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧面为菱形,的中点为,且平面.

证明:
,求三棱柱的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,为矩形,平面平面.
求证:

为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中, ,,侧面为等边三角形..

(1)证明:
(2)求AB与平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四组向量中,互相平行的是(     ).
(1) ,;       (2) ,
(3),;  (4),
A.(1) (2)B.(2) (3)C. (2) (4)D.(1) (3)

查看答案和解析>>

同步练习册答案