精英家教网 > 高中数学 > 题目详情
如图,四棱锥中, ,,侧面为等边三角形..

(1)证明:
(2)求AB与平面SBC所成角的正弦值。
(1)详见解析(2)见解析

试题分析:(1)SD与两条相交直线AB、SE都垂直,利用线面垂直的判定定理,所以(2)利用面面垂直的性质定理,作,垂足为F,

,作,垂足为G,所以AB与平面SBC所成的角等于FG与平面SBC所成的角,进一步利用直角三角形边角关系可得AB与平面SBC所成角的正弦值.
(1)证明:取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2。
连结SE,则
又SD=1,故   所以为直角。
,得
所以
SD与两条相交直线AB、SE都垂直。 所以
(2)由知,,垂足为F,

,
,垂足为G,则FG=DC=1。且
所以AB与平面SBC所成的角等于FG与平面SBC所成的角。
连结SG,则 
,

,H为垂足,则.
从而FG与平面所成的角为
因为 所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点的中点。

(1)求证:直线∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l,m是两条不同的直线,α是一个平面,则下列命题正确的个数为________.
①若l⊥m,m?α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2013·南京模拟]已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:
①若l?α,m?α,l∥β,m∥β,则α∥β;
②若l?α,l∥β,α∩β=m,则l∥m;
③若α∥β,l∥α,则l∥β;
④若l⊥α,m∥l,α∥β,则m⊥β.
其中真命题是________(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
①若  
②若 
③若  
④若 
其中真命题的序号是(    )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案