精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.
(1)证明过程详见解析;(2)证明过程详见解析;(3).

试题分析:本题主要以四棱锥为几何背景,考查线面平行、线面垂直以及三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、转化能力、计算能力.第一问,利用ABCD为直角梯形,所以得到AB//CD,利用线面平行的判定,得AB//平面PCD;第二问,在三角形ABC中,先利用余弦定理求出AC边长,再根据勾股定理判断,而,利用线面垂直的判定,平面PAC;第三问,由于平面ADC,所以M到平面ADC的距离为PA的一半,将转化为,作,在三角形ACB中,解出AE和CE的值,即AD和DC的值,即可得到直角三角形ADC的面积,从而利用三棱锥的体积公式计算体积.
试题解析:(1)底面是直角梯形,且,
,                               1分
平面     2分
平面                 3分
∥平面                4分
(2)

                           5分

             6分
平面 ,平面
              7分
             8分
平面                   9分
(3)在直角梯形中,过于点
则四边形为矩形,         10分
中可得
 
           11分
中点,
到面的距离是到面距离的一半                   12分
          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中, ,,侧面为等边三角形..

(1)证明:
(2)求AB与平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。

(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。

(1)求证:平面
(2)求二面角的大小;
(3)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCDECPD,且PD=2EC.

(1)求证:BE∥平面PDA
(2)若N为线段PB的中点,求证:NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为矩形,平面中点.

(1)证明://平面
(2)证明:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l是直线,α,β是两个不同的平面(    )
A.若l//α,l//β,则α//β
B.若l//α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β
D.若α⊥β,l//α,则l⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD的棱长为1,其中线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是(    )
A.[0,]B.[]
C.[]D.[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中正确命题是(     )
A.若,则
B.若,则
C.若,则
D.若

查看答案和解析>>

同步练习册答案