精英家教网 > 高中数学 > 题目详情
已知四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCDECPD,且PD=2EC.

(1)求证:BE∥平面PDA
(2)若N为线段PB的中点,求证:NE⊥平面PDB.
(1)见解析(2)见解析
(1)∵ECPDPD?平面PDAEC?平面PDA
EC∥平面PDA
同理可得BC∥平面PDA.
EC?平面EBCBC?平面BECECBCC
∴平面BEC∥平面PDA.
又∵BE?平面BEC,∴BE∥平面PDA.

(2)连接AC,交BD于点F,连接NF
FBD的中点,
NFPDNFPD
ECPDECPD
NFECNFEC.
∴四边形NFCE为平行四边形,
NEFC
PD⊥平面ABCDAC?平面ABCD,∴ACPD
DBACPDBDD,∴AC⊥平面PDB
NE⊥平面PDB.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥中,平面,底面是直角梯形,
.

(1)求证:平面
(2)求证:平面
(3)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.

(1)求证:⊥平面
(2)求二面角的余弦值;
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在圆锥中,已知的直径,点在底面圆周上,且的中点.

(1)证明:平面
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
①若  
②若 
③若  
④若 
其中真命题的序号是(    )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和平面,且,则的位置关系是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线(  )
A.不存在B.有且只有两条
C.有且只有三条D.有无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD-A1B1C1D1中,下面结论中正确的是________(把正确结论的序号都填上).
BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1与底面ABCD所成角的正切值是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.则下列命题中假命题是(    )
A.存在点,使得//平面
B.存在点,使得平面
C.对于任意的点,平面平面
D.对于任意的点,四棱锥的体积均不变

查看答案和解析>>

同步练习册答案