精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.
(1)详见解析;(2)点为线段的中点.

试题分析:(1)要证平面,只要证:,由题设平面
,结合条件,可证平面,从而有,结论可证.
(2)以为坐标原点,分别为轴,轴,轴建立空间直角坐标系如图所示
写出相关点的坐标,求出平面和平面的法向量,利用向量的夹角公式求出点的坐标,从而确定点M的位置.

解证:(1)因为平面 平面
所以 ,                    2分
又因为平面,
所以平面                              3分
又因为平面平面
所以                                   4分
因为平面,
所以 平面                                 6分
(2)因为⊥平面,又由(1)知
建立如图所示的空间直角坐标系 .则,,,,
,则
故点坐标为,        8分
设平面的法向量为,则       9分
所以
,则.                          10分
又平面的法向量 
所以,   解得
故点为线段的中点.                          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2011•山东)如图,在四棱台ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中, ,,侧面为等边三角形..

(1)证明:
(2)求AB与平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·安徽高考]在下列命题中,不是公理的是(  )
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD的棱长为1,其中线段AB平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是(    )
A.[0,]B.[]
C.[]D.[]

查看答案和解析>>

同步练习册答案