精英家教网 > 高中数学 > 题目详情
将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).
②③④

试题分析:如图可知①不正确;对于②连接AF、CF可知所以从而,且;同理连接BE,DE可得,且,所以EF是异面直线AC与BD的公垂线,故②正确;对于③,由②可知是二面角的平面角,所以=900,那么在直角三角形AFC中,有,故知③正确;对于④,由②的过程可知其正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBCAB=BC=aAD=2a,且PA⊥底面ABCDPD与底面成30°角.
(1)若AEPDE为垂足,求证:BEPD
(2)求异面直线AECD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面,底面是边长为的正三角形,其重心为点,是线段上一点,且

(1)求证:侧面
(2)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,分别是棱的中点.
(1)证明平面
(2)若二面角P-AD-B为
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l,m是两条不同的直线,α是一个平面,则下列命题正确的个数为________.
①若l⊥m,m?α,则l⊥α;②若l⊥α,l∥m,则m⊥α;③若l∥α,m?α,则l∥m;④若l∥α,m∥α,则l∥m.

查看答案和解析>>

同步练习册答案