精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.
(1)见解析;(2)见解析

试题分析:(1)由E、F分别为PB、PC中点根据三角形中位线定理知EF∥BC,根据线面平行的判定知EF∥面ABC;(2)由PA⊥面PABC知,PA⊥BC,结合AB⊥BC,由线面垂直的判定定理知,BC⊥面PAB,由(1)知EF∥BC,根据线面垂直性质有EF⊥面PAB,再由面面垂直判定定理即可证明面AEF⊥面PAB.
试题解析:证明:(1)在中,分别为的中点      3分
平面平面平面             7分
(2)由条件,平面平面
,即,                  10分

都在平面内     平面
平面平面平面                  14分
考点:线面垂直的判定与性质;面面垂直判定定理;线面平行判定;推理论证能力
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面
(2)求所成的角的余弦值;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,侧面为菱形,的中点为,且平面.

证明:
,求三棱柱的高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在长方体OABC-OABC中,|OA|=2,|AB|=3,|AA|=2,E是BC的中点。

(1)求直线AO与BE所成角的大小;
(2)作OD⊥AC于D。求点O到点D的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·安徽高考]在下列命题中,不是公理的是(  )
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面内的三点,设向量,且,则________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若向量,且的夹角余弦为,则等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案