精英家教网 > 高中数学 > 题目详情
若向量,且的夹角余弦为,则等于(  )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,平面,分别为,的中点.
(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面,底面是边长为的正三角形,其重心为点,是线段上一点,且

(1)求证:侧面
(2)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方形中,, ,的中点.将沿折起,使得平面平面
(1)求证:; 
(2)若点是线段的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱中,底面边长为,侧棱长为4,点分别为棱的中点,,求点到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,
cos〈,〉=.
(1)建立适当的空间坐标系,写出点E的坐标;
(2)在平面PAD内求一点F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的法向量.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.在平面直角坐标系中,方程表示过点且平行于轴的直线。类比以上结论有:在空间直角坐标系中,方程表示         。

查看答案和解析>>

同步练习册答案