精英家教网 > 高中数学 > 题目详情
在四棱锥PABCD中,底面ABCD是一直角梯形,∠BAD=90°,ADBCAB=BC=aAD=2a,且PA⊥底面ABCDPD与底面成30°角.
(1)若AEPDE为垂足,求证:BEPD
(2)求异面直线AECD所成角的余弦值.
(1)见解析(2)
(1)证明:∵PA⊥平面ABCD,∴PAAB,又ABAD.∴AB⊥平面PAD.又∵AEPD,∴PD⊥平面ABE,故BEPD
(2)解:以A为原点,ABADAP所在直线为坐标轴,建立空间直角坐标系,则点CD的坐标分别为(aa,0),(0,2a,0).
PA⊥平面ABCD,∠PDAPD与底面ABCD所成的角,∴∠PDA=30°.
于是,在Rt△AED中,由AD=2a,得AE=a.过EEFAD,垂足为F,在Rt△AFE中,由AE=a,∠EAF=60°,得AF=EF=a,∴E(0,a
于是,={-aa,0}
的夹角为θ,则由
cosθ=
AECD所成角的余弦值为
评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分) 如图,在三棱锥中,,点分别是的中点,底面
(1)求证:平面
(2)当时,求直线与平面所成角的正弦值;
(3)当为何值时,在平面内的射影恰好为的重心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为平行四边形,底面,E在棱上,  (Ⅰ) 当时,求证: 平面;  (Ⅱ) 当二面角的大小为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为的正方体中,分别是的中点,求点到截面的距离              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在长方体OABC-OABC中,|OA|=2,|AB|=3,|AA|=2,E是BC的中点。

(1)求直线AO与BE所成角的大小;
(2)作OD⊥AC于D。求点O到点D的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
;②是异面直线的公垂线;③当二面角是直二面角时,间的距离为;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


四、附加题:本大题共2小题,每小题10分,共20分。
(20)(本小题满分10分)
已知是边长为1的正方形,分别为上的点,且沿将正方形折成直二面角

(I)求证:平面平面
(II)设与平面间的距离为,试用表示

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是平面内的三点,设向量,且,则________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四组向量中,互相平行的是(     ).
(1) ,;       (2) ,
(3),;  (4),
A.(1) (2)B.(2) (3)C. (2) (4)D.(1) (3)

查看答案和解析>>

同步练习册答案