精英家教网 > 高中数学 > 题目详情
如图,四棱锥中,,底面为梯形,,且.(10分)

(1)求证:;
(2)求二面角的余弦值.
(1)证明见解析;(2)二面角的余弦值为

试题分析:(1)连结,交于点,连结,由所给条件可得,即,则;(2)以为原点,所在直线分别为轴、轴,如图建立空间直角坐标系.
,则可得坐标,设为平面的一个法向量,由
,可得,同理为平面的一个法向量,, 知二面角的余弦值.
试题解析:(1)连结,交于点,连结, ∵, ∴
又 ∵, ∴∴ 在△BPD中,
   ∴∥平面----------------4分

(2)方法一:以为原点,所在直线分别为轴、轴,如图建立空间直角坐标系.

,则
为平面的一个法向量,
,∴
解得,∴
为平面的一个法向量,则
,∴
解得,∴  
∴二面角的余弦值为.-------------------10分
方法二:在等腰Rt中,取中点,连结,则 

∵面⊥面,面=,∴平面
在平面内,过直线,连结,由
平面,故
就是二面角的平面角.
中,设

可知:
,  代入解得:
中,

∴二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,侧面,底面是边长为的正三角形,其重心为点,是线段上一点,且

(1)求证:侧面
(2)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是平行四边形,平面的中点.
(1)求证:平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱中,侧面为菱形,.

(Ⅰ)证明:;
(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为圆柱的母线,是底面圆的直径,分别是的中点,
(1)证明:
(2)证明:
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥 内会有被捕的危险,求鱼被捕的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的多面体是由底面为的长方体被截面所截面而得到的,其中.
(Ⅰ)求的长;
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,棱长为的正方体中,为线段上的动点,则下列结论错误的是
A.
B.平面平面
C.的最大值为
D.的最小值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两个不同的平面,是平面之外的两条不同直线,给出四个论断:
  ②  ③   ④。 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________________________.

查看答案和解析>>

同步练习册答案