精英家教网 > 高中数学 > 题目详情
经市场调查,某商品在-个月内(按30天计算)的销售量(单位:件)与销售价格《单位:元)均为时间(单位:天)的函效,已知销售量f(t)与时间t近似满足函数关系:f(t)=36-t(0≤t≤30 t∈N),销售价格g(x)与时间t的函数关系如图所示.
(1)写出该商品的日销售额(单位:元》与时间t的函数关系;(注:日销售额=日销售量×当日价格)
(2)试判断当月哪一天的销售额最大,并求出其最大值.
考点:函数模型的选择与应用,分段函数的应用
专题:应用题,函数的性质及应用
分析:(1)根据图象,可得每件销售价格g(x)与时间t的函数关系,从而可得商品的日销售额(单位:元》与时间t的函数关系;
(2)结合日销量Q(件)与时间t(天)之间的关系,可得日销售金额函数,分段求最值,即可得到结论.
解答: 解:(1)根据图象,每件销售价格g(x)与时间t的函数关系为:g(x)=
t+20(0≤t<10)
-t+40(10≤t≤30)
(t∈N),
∴商品的日销售额(单位:元》与时间t的函数关系为
(t+20)(36-t)(0≤t<10)
(40-t)(36-t)(10≤t≤30)
(t∈N);
(2)若0≤t<10,t∈N时,y=-t2+16t+720=-(t-8)2+784,∴当t=8时,ymax=784;
若10≤t≤30,t∈N时,y=t2-76t+1440=(t-28)2+656,∴当t=10时,ymax=780,
∴当t=8时,ymax=784
因此,这种产品在第8天的日销售金额最大,最大日销售金额是784元.
点评:本题考查函数模型的建立,考查函数的最值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
),b=-2f(-2),c=ln
1
2
f(ln2),则下列关于a,b,c的大小关系正确的是(  )
A、a>b>c
B、b>a>c
C、c>b>a
D、a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(x)=ax+2,f(x)=
2x-1,0≤x≤3
-x2,-1≤x<0
,对?x1∈[-1,3],?x0∈[-1,3],使g(x1)=f(x0)恒成立,则a的取值范围是(  )
A、a≥-1
B、-1≤a≤
5
3
C、0<a≤
5
3
D、a≤
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,关于x的函数f(x)=x(1-x),则下列结论中正确的是(  )
A、f(x)有最大值
1
4
B、f(x)有最小值
1
4
C、f(x)有最大值-
1
4
D、f(x)有最小值-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos3φ,sin3φ),
b
=(cos(α-φ),sin(α-φ)),φ∈[0,
π
4
],
b
=x
a
(x>0).
(1)求|
a
|的取值范围;
(2)设
3
cosα=y,求y与x的函数关系式y=f(x),并指出其定义域;
(3)设正项数列{an}满足a1=1,an+1=f(an),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求证:OE∥平面PDC;
(Ⅲ)求面PAD与面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=3,|
b
|=2,
a
b
的夹角为60°,
c
=3
a
+5
b
d
=m
a
-3
b

(1)当m为何值时,
c
d
垂直?
(2)当m为何值时,
c
d
共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0},问同时满足B⊆A,C⊆A的实数a、b是否存在?若存在,求出a、b所有的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知开口向右的抛物线经过点(1,-2)
(1)求抛物线的标准方程.
(2)过抛物线的焦点F,作倾角为
π
3
的弦AB,求AB的长度.

查看答案和解析>>

同步练习册答案