精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,首项为a1,且1,an,Sn成等差数列。
(1)求数列{an}的通项公式;
(2)设Tn为数列{}的前n项和,若对于其中n∈N*,总有成立,其中m∈N*,求m的最小值。
解:(Ⅰ)由题意知
当n=1时,2a1=a1+1,∴a1=1,
当n≥2时,Sn=2an-1,Sn-1=2an-1-1,
两式相减得
整理得
∴数列{an}是以1为首项,2为公比的等比数列,

(Ⅱ)

两式相减


∵对于一切n∈N*,有成立,即只需,即
∴m的最小值为16。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案