精英家教网 > 高中数学 > 题目详情
(13分)椭圆C:长轴为8离心率
(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,
求这条弦所在的直线方程。
答案:(1)标准方程为           (6分)
(2)解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:

又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是

又M为AB的中点,所以, 
解得,                             (5分)
故所求直线方程为。            (2分)
解法二:设直线与椭圆的交点为A(),B(),M(2,1)为AB的中点,
所以
又A、B两点在椭圆上,则
两式相减得
所以,即,  (5分)
故所求直线方程为。             (2分)
解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1),
则另一个交点为B(4-),
因为A、B两点在椭圆上,所以有
两式相减得
由于过A、B的直线只有一条,                 (5分)
故所求直线方程为。              (2分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点  在直线上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直
线倾斜角为,原点到该直线的距离为.
(1)求椭圆的方程;
(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;
(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点是椭圆一点,离心率是椭圆的两
个焦点.
(1)求椭圆的面积;
(2)求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆经过点,一个焦点是
(I)求椭圆的方程;
(II)设椭圆轴的两个交点为,不在轴上的动点在直线上运动,直线分别与椭圆交于点,证明:直线经过焦点

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆 1(m>0,n>0)的一个焦点与抛物线x2=4y的焦点相同,离心率为:则此椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A(1,1)是椭圆上一点,F1­,F2,是椭圆上的两焦点,且满足
(I)求椭圆方程; 
(Ⅱ)设C,D是椭圆上任两点,且直线AC,AD的斜率分别为,若存在常数使,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则m=( )
A.B.C.D.

查看答案和解析>>

同步练习册答案