精英家教网 > 高中数学 > 题目详情
.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点  在直线上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
解(1)又由点M在准线上,得          ………2分
   从而                          
所以椭圆方程为                                 ……………4分
(2)以OM为直径的圆的方程为
                                
其圆心为,半径                                ……………6分
因为以OM为直径的圆被直线截得的弦长为2
所以圆心到直线的距离            ……………8分
所以,解得
所求圆的方程为                          ……………10分
(3)方法一:设过点F作直线OM的垂线, 垂足为K,由平几知:
直线OM:,直线FN:          ……12分

所以线段ON的长为定值
所以线段ON的长为定值…………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆经过点,离心率为
(1)求椭圆的方程;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点恰好是椭圆的右焦点,且两条曲线的交点连线也过焦点,则椭圆的离心率为             (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:(a〉b>0)的左焦点为,椭圆过点P(
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为   ( ) 
     B           C  2           D  4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)椭圆C:长轴为8离心率
(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,
求这条弦所在的直线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的离心率为,则__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的右焦点为圆心作一个圆过椭圆的中心O并交椭圆于M、N,若过椭圆左焦点的直线是圆的切线,则椭圆的右准线与圆的位置关系是_______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为椭圆上一点,F1、F2是椭圆的左、右焦点,若使△F1PF2为直角三角形的点P共有8个,则椭圆离心率的取值范围是            

查看答案和解析>>

同步练习册答案