精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=$\left\{\begin{array}{l}{{3}^{-x}}&{x∈[-1,0)}\\{{3}^{x}}&{x∈[0,1)}\end{array}\right.$,则f(log3$\frac{1}{2}$)=2.

分析 根据分段函数的表达式进行求解即可.

解答 解:∵log3$\frac{1}{2}$∈[-1,0),
∴f(log3$\frac{1}{2}$)=${3}^{-lo{g}_{3}}\frac{1}{2}={3}^{lo{g}_{3}2}$=2,
故答案为:2

点评 本题主要考查函数值的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求$\frac{5si{n}^{2}α+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若不等式x+2$\sqrt{xy}$≤a(x+y)对任意的实数x,y∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数:①f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;②f(x)=x3-x;③f(x)=ln(x+$\sqrt{{x}^{2}+1}$);④f(x)=ln$\frac{1-x}{1+x}$.
其中奇函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y∈R,i为虚数单位,且(x+i)(1-i)=y,则x+y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{3}$sin2(x+$\frac{π}{4}$)-cos2x-$\frac{1+\sqrt{3}}{2}$(x∈R).
(1)求函数f(x)最小值和最小正周期;
(2)若A为锐角,且向量$\overrightarrow{m}$=(1,5)与向量$\overrightarrow{n}$=(1,f($\frac{π}{4}$-A))垂直,求cos2A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{lg(x+1),x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若f(2-a2)>f(a),则实数a的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列关系中表述正确的是(  )
A.0∈{x2=0}B.0∈{(0,0)}C.0∈∅D.0∈N

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合M={x|x=3k,k∈Z},P={x|x=3k+1,k∈Z},Q={x|x=3k-1,k∈Z},若a∈M,b∈P,c∈Q,求a+b-c所在的集合.

查看答案和解析>>

同步练习册答案