精英家教网 > 高中数学 > 题目详情

【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每科目满分100.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法抽取名学生进行调查.

1)已知抽取的名学生中含男生55人,求的值;

2)为了了解学生对自选科目中“物理”和“地理”两个科目的选课意向,对在(1)条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

3)在抽取到的选择“地理”的学生中按分层抽样抽取6名,再从这6名学生中随机抽取3人,设这3人中女生的人数为,求的分布列及数学期望.

附参考公式及数据:,其中.

0.05

0.01

3.841

6.635

【答案】(1)(2)填表见解析,有的把握认为选择科目与性别有关(3)详见解析

【解析】

1)利用频率与频数和样本容量的关系求出和男生的人数(2)写出列联表,计算,对照临界值得出结论(3)由分层抽样得到6名学生中男、女人数,写出可能值,分别求出概率即可得到分布列,即可计算期望.

1)由题意知,∴.

2列联表为:

选择“物理”

选择“地理”

总计

男生

45

10

55

女生

25

20

45

总计

70

30

100

.

故有的把握认为选择科目与性别有关.

3)从选择“地理”的学生中分层抽样6名同学,则其中2名男生,4名女生,

6名同学中再抽取3名,其中女生的人数可能为123

所以的分布列为

1

2

3

学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过的左焦点.

(1)求的方程;

(2)直线经过的上顶点且交于两点,直线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)令,求证:有唯一的极值点;

2)若点为函数上的任意一点,点为函数上的任意一点,求两点之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆两焦点分别为,且离心率

(1)设E是直线与椭圆的一个交点,求取最小值时椭圆的方程;

(2)已知,是否存在斜率为k的直线l与(1)中的椭圆交于不同的两点AB,使得点N在线段AB的垂直平分线上,若存在,求出直线ly轴上截距的范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到两定点M(﹣30),N30)的距离满足|PM|2|PN|.

1)求证:点P的轨迹为圆;

2)记(1)中轨迹为⊙C,过定点(01)的直线l与⊙C交于AB两点,求△ABC面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

)若函数上递减, 求实数的取值范围;

)当时,求的最小值的最大值;

)设,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数ω0)的最小正周期为π

(Ⅰ)求ω的值和fx)的单调递增区间;

(Ⅱ)若关于x的方程fx)﹣m0在区间[0]上有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月(20175月到201710月)内在西安市的市场占有率进行了统计,并绘制了相应的折线图.

1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程;

2公司对员工承诺如果公司的共享单车在2017年年底(12月底)能达到西安市场占有率的,员工每人都可以获得年终奖,依据上面计算得到回归方程估计员工是否能得到年终奖.

(参考公式:回归直线方程为,其中

查看答案和解析>>

同步练习册答案