精英家教网 > 高中数学 > 题目详情

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月(20175月到201710月)内在西安市的市场占有率进行了统计,并绘制了相应的折线图.

1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程;

2公司对员工承诺如果公司的共享单车在2017年年底(12月底)能达到西安市场占有率的,员工每人都可以获得年终奖,依据上面计算得到回归方程估计员工是否能得到年终奖.

(参考公式:回归直线方程为,其中

【答案】1 2)可以获得年终奖.

【解析】

1)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系,求y关于x的线性回归方程;

2)由(1)可得M公司201712月份(即x=8时)的市场占有率预计为25%,可以达到预期目标,所以依此估计员工可以获得年终奖.

1)由折线图中所给的数据计算可得

月度市场占有率y与月份序号x之间的线性回归方程为

2)由(1)可得

时,

即预测M公司201712月份(即时)的市场占有率为
可以达到预期目标,所以依次估计员工能得到年终奖.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(63),每科目满分100.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法抽取名学生进行调查.

1)已知抽取的名学生中含男生55人,求的值;

2)为了了解学生对自选科目中“物理”和“地理”两个科目的选课意向,对在(1)条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

3)在抽取到的选择“地理”的学生中按分层抽样抽取6名,再从这6名学生中随机抽取3人,设这3人中女生的人数为,求的分布列及数学期望.

附参考公式及数据:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中,若,则当四面体的体积最大时其外接球表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,在直角梯形中,ABCDABBCCD=2AB=2BC=4,过A点作AECD,垂足为E,现将ΔADE沿AE折叠,使得DEEC.AD的中点F,连接BFCFEF,如图乙。

(1)求证:BC⊥平面DEC

(2)求二面角C-BF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有分别写有123455张卡片.

1)从中随机抽取2张,求两张卡片上数字和为5的概率;

2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有分别写有123455张卡片.

1)从中随机抽取2张,求两张卡片上数字和为5的概率;

2)从中随机抽取1张,放回后再随机抽取1张,求抽得的第一张卡片上的数大于第二张卡片上的数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上横坐标为的点到焦点的距离为.

1)求抛物线的方程;

2若过点的直线与抛物线交于不同的两点且以为直径的圆过坐标原点,求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)已知过点的直线与圆相交截得的弦长为,求直线的方程;

(3)已知点,在平面内是否存在异于点的定点,对于圆上的任意动点,都有为定值?若存在求出定点的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案