精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上横坐标为的点到焦点的距离为.

1)求抛物线的方程;

2若过点的直线与抛物线交于不同的两点且以为直径的圆过坐标原点,求的面积。

【答案】(1);(2

【解析】试题分析:1由抛物线上横坐标为的点到焦点的距离为可得 解得从而可得抛物线的方程;(2先讨论直线斜率不存在时的情况,当斜率存在时,设直线方程为联立,消去根据韦达定理、平面向量数量积公式以及弦长公式点到直线距离公式与三角形面积公式可求得的面积.

试题解析:(1)依题意: 解得,所以抛物线的方程为

(2)依题意:若直线斜率不存在时,直线与抛物线只有一个交点,不符合题意;

所以设直线方程为

联立,消去

所以

因为以为直径的圆过坐标原点,所以

所以

解得,点到直线的距离为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解下列关于x的不等式:

(1); (2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设公差不为零的等差数列{an}的前5项的和为55,且a2 ﹣9成等比数列.
(1)求数列{an}的通项公式.
(2)设数列bn= ,求证:数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:

(1)本次一共调查了多少名学生.(2)在图(1)中将对应的部分补充完整.

(3)若该校有3 000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200)

(200,300]

(300,+∞)

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量取整数)存在如下关系 且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,yt的关系拟合的曲线为,现已取出了10对样本数据(tiyi)(i=12310),且知 试用可线性化的回归方法,求拟合曲线的表达式.(附:线性回归方程中, .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m件,且当月销完,你估计哪个月份盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,若的图象上相邻两条对称轴的距离为,图象过点.

(1)求表达式和的单调增区间;

(2)将函数的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若函数在区间上有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数,其中a为常数.

I)若x=1是函数的一个极值点,求a的值

II)若函数在区间(-10)上是增函数,求a的取值范围

III)若函数,在x=0处取得最大值,求正数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.

(Ⅰ)求圆的方程.

)设直线与圆相交于 两点,求实数的取值范围.

)在()的条件下,是否存在实数,使得点 两点的距离相等,若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案