精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

【答案】
(1)解:直线AB方程为bx﹣ay﹣ab=0,

依题意可得:

解得:a2=3,b=1,

∴椭圆的方程为


(2)解:假设存在这样的值.

得(1+3k2)x2+12kx+9=0,

∴△=(12k)2﹣36(1+3k2)>0…①,

设C(x1,y1),D(x2,y2),

而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,

要使以CD为直径的圆过点E(﹣1,0),

当且仅当CE⊥DE时,

则y1y2+(x1+1)(x2+1)=0,

∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③

将②代入③整理得k=

经验证k= 使得①成立综上可知,存在k= 使得以CD为直径的圆过点E


【解析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得: ,由此能求出椭圆的方程.(2)假设存在这样的值. ,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 的中点, 是棱 上的点, .

(1)求证:平面 底面
(2)设 ,若二面角 的平面角的大小为 ,试确定 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)判断函数的单调性(只写出结论即可);

(3)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所有抽取的30岁以上的网民中利用分层抽样抽取5人,

求这5人中经常使用、偶尔或不用共享单车的人数;

从这5人中,在随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识增强环保意识,某校从理工类专业甲班抽取60人,从文史类乙班抽取50人参加环保知识测试 附:k2= ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879


(1)根据题目条件完成下面2×2列联表,并据此判断你是否有99%的把握认为环保知识与专业有关

优秀

非优秀

总计

甲班

乙班

30

总计

60


(2)为参加上级举办的环保知识竞赛,学校举办预选赛,预选赛答卷满分100分,优秀的同学得60分以上通过预选,非优秀的同学得80分以上通过预选,若每位同学得60分以上的概率为 ,得80分以上的概率为 ,现已知甲班有3人参加预选赛,其中1人为优秀学生,若随机变量X表示甲班通过预选的人数,求X的分布列及期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图象恒过(0,0)(1,1)两点,则称函数“0-1函数”.

(1)判断下面两个函数是否是“0-1函数,并简要说明理由:

.

(2)若函数“0-1函数,求

(3)设 ,定义在R上的函数满足:① , R,均有 “0-1函数,求函数的解析式及实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间

(Ⅱ)若恒成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2﹣3x+2=0}B={x|x2+2a﹣1x+a2﹣5=0}

1)若A∩B={2},求实数a的值;

2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)ax2bxc,且f(1)=-3a2c2b,求证:

(1)a0,且-3<-

(2)函数f(x)在区间(0,2)内至少有一个零点;

(3)x1x2是函数f(x)的两个零点,则≤|x1x2|.

查看答案和解析>>

同步练习册答案