【题目】已知函数
.
(1)当
时,求函数
的单调区间和极值;
(2)若
在
上是单调增函数,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
,过点
作椭圆C的切线l,在第一象限的切点为P,过点P作与直线l倾斜角互补的直线,恰好经过椭圆C的下顶点N.
(1)求椭圆C的方程;
(2)F为椭圆C的右焦点,过点F且与x轴不垂直的直线
交椭圆C于A,B两点,点A关于x轴的对称点为
,则直线
是否过定点,若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥
中,底面
为直角梯形,
,
,
,
,
,
为
的中点,平面
平面
,
为
上一点,
平面
.
![]()
(1)求证:平面
平面
;
(2)若
与底面
所成的角为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(2)=0,则不等式f(log2x)>0的解集为( )
A.(
,4)B.(2,2)C.(
,+∞)D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,且有AB∥DC,AC=CD=DA
AB.
![]()
(1)证明:BC⊥PA;
(2)若PA=PC=AC,求平面PAD与平面PBC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线
的参数方程为
(
是参数),以原点为极点,
轴的非负半轴
为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点
在曲线
上,曲线
在点
处的切线与直线
垂直,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.
(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.
(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:
![]()
计算说明哪位运动员的成绩更稳定.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱内有一个三棱锥
,
为圆柱的一条母线,
,
为下底面圆
的直径,
.
(Ⅰ)在圆柱的上底面圆内是否存在一点
,使得
平面
?证明你的结论.
(Ⅱ)设点
为棱
的中点,
,求四棱锥
体积的最大值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com