精英家教网 > 高中数学 > 题目详情
奇函数上为单调递减函数,且,则不等式 的解集为(  )
A.B.
C.D.
D

试题分析:∵函数f(x)在(0,+∞)上为单调递减函数,且f(2)=0,∴函数f(x)在(0,2)的函数值为正,在(2,+∞)上的函数值为负.当x>0时,不等式等价于3f(﹣x)﹣2f(x)≤0,又奇函数f(x),所以有f(x)≥0,所以有0<x≤2.同理当x<0时,可解得﹣2≤x<0.综上,不等式的解集为[﹣2,0)∪(0,2].故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数是奇函数.
(Ⅰ)求a的值;
(Ⅱ)判断的单调性并证明;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)计算的值,据此提出一个猜想,并予以证明;
(2)证明:除点(2,2)外,函数的图像均在直线的下方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求曲线在原点处的切线方程;
(Ⅱ)当时,讨论函数在区间上的单调性;
(Ⅲ)证明不等式对任意成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的奇函数,,则的解集是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域为的偶函数满足对,有,且当 时,,若函数上至少有三个零点,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数  有如下命题:
(1)函数图像关于轴对称.
(2)当时,是增函数,时,是减函数.
(3)函数的最小值是.
(4)当时.是增函数.
(5)无最大值,也无最小值.
其中正确命题的序号            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在实数集R上的奇函数,且当成立(其中的导函数),若的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为正实数,函数上的最大值为,则上的最小值为            .

查看答案和解析>>

同步练习册答案