精英家教网 > 高中数学 > 题目详情

【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:

(1)选其中5人排成一排

(2)全体排成一排,甲不站在排头也不站在排尾

(3)全体排成一排,男生互不相邻

(4)全体排成一排,甲、乙两人中间恰好有3人

【答案】(1)2520;(2)3600;(3)1440;(4)720.

【解析】试题分析:

(1)属于从7个不同元素中任选5个的排列;

(2)第一步先安排特殊元素甲,第二步其他6人全排列即可;

(3)第一步排所有女生,第二步在5个空位(含两端)排3个男生;

(4)第一步选3人排在甲乙中间(注意这3人全排列),第二步甲乙两也全排列,第三步甲乙和他们中间的3人作为一个整体与剩下的2人变成3个元素再全排列.

试题解析:

(1)=2520(种).

(2)先排甲,有5种方法,其余6人有种方法,故共有5×=3600(种).

(3)男生不相邻,而女生不作要求,∴应先排女生,有种方法,

再在女生之间及首尾空出的5个空位中任选3个空位排男生,有种方法,故共有·=1440(种).

(4)把甲、乙及中间3人看作一个整体,

第一步先排甲、乙两人有种方法,

再从剩下的5人中选3人排到中间,有种方法,

最后把甲、乙及中间3人看作一个整体,与剩余2人排列,有种方法,

故共有··=720(种).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前3项和为6,前8项和为-4.

(1)求数列{an}的通项公式;

(2)设bn=(4-an)qn-1 (q≠0,n∈N*),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论求该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,且 两点的“椭点”分别为 ,以为直径的圆经过坐标原点,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在上的最小值为当把的图象上所有的点向右平移个单位后得到函数的图象.

(1)求函数的解析式;

(2)在对应的边分别是若函数轴右侧的第一个零点恰为求△的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:

降水量





工期延误天数

0

2

6

10

历年气象资料表明,该工程施工期间降水量小于300700900的概率分别为0.30.70.9,求:

1)工期延误天数的均值与方差;

2)在降水量至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图,在多面体中,平面,,且是边长为2的等边三角形,,与平面所成角的正弦值为.

(1)若是线段的中点,证明:

(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案