精英家教网 > 高中数学 > 题目详情

【题目】图,在多面体中,平面,,且是边长为2的等边三角形,,与平面所成角的正弦值为.

(1)若是线段的中点,证明:

(2)求二面角的平面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】

试题分析:(1)取中点,连接平面即是与平面所成的角,求出,以为原点,建立空间直角坐标系,取的中点,则.利用,(2)求出平面的一个法向量和平面的一个法向量,利用两个法向量的夹角求出二面角的平面角

试题解析:(1)证明:取AB的中点,连结,则

即是与平面所成角,

的中点为,以为原点,轴,轴,建立如图空间直角坐标系,则

的中点为,则

,

所以,所以.

(2)解:由上面知:

取平面的一个法向量

,,

由此得平面的一个法向量

,所以二面角的平面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:

(1)选其中5人排成一排

(2)全体排成一排,甲不站在排头也不站在排尾

(3)全体排成一排,男生互不相邻

(4)全体排成一排,甲、乙两人中间恰好有3人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )

(参考数据:

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 平分 的中点, .

(1)证明: 平面.

(2)证明: 平面.

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数,=2.71828……是自然对数的底数),曲线在点处的切线与轴平行.

1)求的值;

2)求的单调区间;

3)设,其中的导函数.证明:对任意>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

(1)讨论函数单调性;

(2)时,成立,求实数取值范围

(3)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】否定“自然数中恰有一个偶数”时正确的反设为( )

A. 都是奇数 B. 至少有两个偶数

C. 都是偶数 D. 中都是奇数或至少有两个偶数

查看答案和解析>>

同步练习册答案