精英家教网 > 高中数学 > 题目详情

【题目】已知 若函数上的最大值为,最小值为 .

1)求的表达式;

2)若关于的方程有解,求实数的取值范围.

【答案】1;(2)实数的取值范围为.

【解析】

1)根据解析式,讨论的取值范围,求出的最值,得出a)的表达式;

2)先用定义判断函数a)在定义域上的单调性,再求出a)的值域,把方程a有解转化为a)有解,求出的取值范围即可.

(1)1

,即时,则时,函数取得最大值;时,函数取得最小值.

3

,即时,则时,函数取得最大值;时,函数取得最小值.

. 5

综上,得

2)任取,且

,且

,即

函数上单调递减

任取,且

,且

,即

函数上单调递增

时,取得最小值,其值为

函数的值域为

关于的方程有解等价于有解

实数的取值范围为函数的值域,

实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次不等式ax2+x+b>0的解集为(-∞,-2)∪(1,+∞).

(Ⅰ)求ab的值;

(Ⅱ)求不等式ax2-(c+bx+bc<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019831日至915日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是(

A.第一场得分的中位数为B.第二场得分的平均数为

C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知曲线的极坐标方程为,以极点为直角坐标原点,以极轴为轴的正半轴建立平面直角坐标系,将曲线向左平移个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的,纵坐标保持不变,得到曲线

(1)求曲线的直角坐标方程;

(2)已知直线的参数方程为,(为参数),点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】xyz为非零实数,满足xy+yz+zx=1,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生学习的自律性很重要.某学校对自律性与学生成绩是否有关进行了调研,从该校学生中随机抽取了100名学生,通过调查统计得到列联表的部分数据如下表:

自律性一般

自律性强

合计

成绩优秀

40

成绩一般

20

合计

50

100

1)补全列联表中的数据;

2)判断是否有的把握认为学生的自律性与学生成绩有关.

参考公式及数据:.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】)已知c0,关于x的不等式:x+|x-2c|≥2的解集为R.求实数c的取值范围;

(Ⅱ)若c的最小值为m,又pqr是正实数,且满足p+q+r=3m,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左焦点为且离心率为为椭圆上任意一点,的取值范围为.

(1)求椭圆的方程;

(2)如图,设圆是圆心在椭圆上且半径为的动圆,过原点作圆的两条切线,分别交椭圆于两点.是否存在使得直线与直线的斜率之积为定值?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案