精英家教网 > 高中数学 > 题目详情
已知函数=.
(1)讨论的单调性;
(2)设,当时,,求的最大值;
(3)已知,估计ln2的近似值(精确到0.001)
(1)函数在R上是增函数;(2)2;(3)
试题分析:本题第(1)问,判断函数的单调,关键是判断导数的正数;对第(2)问,可构造函数,对(3)问,可根据的取值讨论.
试题解析:(1)因为,当且仅当时等号成立,所以函数在R上是增函数;
(2)因为=
所以=.
(1)当时, ,等号仅当时成立,所以在R上单调递增,而,所以对任意
(2)当时,若满足,即时,,而
因此当时,
综上,的最大值为2.
(3)由(2)知,
时,
时,
,所以的近似值为.
【易错点】对第(Ι)问,函数单调性的判断,容易;对第(2)问,考虑不到针对去讨论;对第(3)问,
找不到思路.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,其中.
(1)当时,求的单调递增区间;
(2)若在区间上的最小值为8,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程
(1)求函数的解析式;   
(2)求函数的图像有三个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间上单调递增,且方程的根都在区间上,则实数b的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在R上可导,其导函数为且函数的图像如图所示,则下列结论一定成立的是(    )
 
A.函数的极大值是,极小值是
B.函数的极大值是,极小值是
C.函数的极大值是,极小值是
D.函数的极大值是,极小值是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数
(1)a=0时,求f(x)最小值;
(2)若f(x)在是单调减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若曲线在点处的切线方程为,求的值;
(2)当时,求的单调区间与极值.

查看答案和解析>>

同步练习册答案