精英家教网 > 高中数学 > 题目详情

【题目】如图1所示,在直角梯形的中点的交点.将沿折起到△的位置如图2所示.

1证明:平面

2若平面平面求平面与平面所成锐二面角的余弦值

【答案】1证明见解析;2.

【解析】

试题分析:1由图1可得,由图2可得平面,根据线面垂直的性质可得平面2由平面平面可得为二面角的平面角,所以,因此以为原点所在直线分别为轴建立空间直角坐标系,分别求出平面与平面的法向量,根据向量的夹角公式求解.

试题解析:1证明:在图1中,因为的中点

所以

在图2中,

平面平面

从而平面

所以平面

2由已知,平面平面

又由1知,

所以为二面角的平面角

所以

如图,以为原点所在直线分别为轴建立空间直角坐标系

因为

所以

设平面的法向量平面的法向量平面与平面的夹角为

从而

即平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求当时, 的值域;

(2)若函数内有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.

(1)若圆分别与轴、轴交于点(不同于原点),求证:的面积为定值;

(2)设直线与圆交于不同的两点,且,求圆的方程;

(3)设直线(2)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,且在直线异侧,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中国某手机品牌公司生产某款手机的年固定成本为40万元,每生产1万部还需另投入16万元.设公司一年内共生产该款手机万部并全部销量完,每万部的销售收入为万元,且

1)写出年利润万元关于年产量(万部)的函数解析式;

2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.

(Ⅰ)求f()的值;

(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

(1) 算出线性回归方程; (a,b精确到十分位)

(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.

(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据x1,x2,x3,…,xn是普通职工n(n≥3,n∈N*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则这n+1个数据中,下列说法正确的是

A. 年收入平均数大大增大,中位数一定变大,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为1的正方形,,且的中点.

I)求证:平面

II)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案