【题目】定义变换
将平面内的点
变换到平面内的点
;若曲线
经变换
后得到曲线
,曲线
经变换
后得到曲线
,…,依次类推,曲线
经变换
后得到曲线
,当
时,记曲线
与
、
轴正半轴的交点为
和
,某同学研究后认为曲线
具有如下性质:①对任意的
,曲线
都关于原点对称;②对任意的
,曲线
恒过点
;③对任意的
,曲线
均在矩形
(含边界)的内部,其中
的坐标为
;④记矩形
的面积为
,则
;其中所有正确结论的序号是_______.
【答案】③④
【解析】
在曲线
上任取一点
,经变换
后得到曲线
上的点
,…….依次类推,经变换
后得到曲线
上的点
,根据变换
得:
,两边取对数,得到![]()
所以
分别以
为首项,以
为公比的等比数列,从而得到
,再根据代入法求轨迹方程,得到
,然后再对四个命题逐一讨论,进而得到正确的结论.
在曲线
上任取一点![]()
经变换
后得到曲线
上的点
,
曲线
经变换
后得到曲线
上的点
,
依次类推,曲线
上的点
,
经变换
后得到曲线
上的点
,
根据题意得:
,
所以![]()
即![]()
所以
分别以
为首项,以
为公比的等比数列.
所以![]()
所以![]()
又因为点
在曲线
上
所以
①点
不适合
,所以曲线
不关于原点对称;故错误.
②令
所以曲线
不过点
;故错误.
③令
得
,令
,得
,
因为
,所以
,
同理
所以对任意的
,曲线
均在矩形
(含边界)的内部,其中
的坐标为
;故正确.
④记矩形
的面积为
,则
,
故
,故正确.
综上:③④正确
故答案为:③④
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,设直线
过椭圆
的上顶点和右顶点,坐标原点
到直线
的距离为
.
(1)求椭圆
的方程.
(2)过点
且斜率不为零的直线
交椭圆
于
,
两点,在
轴的正半轴上是否存在定点
,使得直线
,
的斜率之积为非零的常数?若存在,求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心足正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中. 已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则点P从A移动到D的过程中,点Q在点P的育区中的时长约为________秒(精确到0.1)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的两条渐近线与抛物线
的准线分别交于
,
两点.若双曲线
的离心率为
,
的面积为
,
为坐标原点,则抛物线
的焦点坐标为 ( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD-A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Γ:
+
=1(a>b>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以P为顶点的圆锥中,母线长为
,底面圆的直径AB长为2,O为圆心.C是圆O所在平面上一点,且AC与圆O相切.连接BC交圆于点D,连接PD,PC,E是PC的中点,连接OE,ED.
![]()
(1)求证:平面
平面PAC;
(2)若二面角
的大小为
,求面PAC与面DOE所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
:
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com