精英家教网 > 高中数学 > 题目详情
6.在($\sqrt{x}-\frac{2}{\sqrt{x}}$)n的展开式中,偶数项的二次项系数为64,则展开式共有(  )
A.6项B.7项C.8项D.9项

分析 偶数项的二次项系数为2n-1=64,求得n的值,可得展开式的项数.

解答 解:在($\sqrt{x}-\frac{2}{\sqrt{x}}$)n的展开式中,偶数项的二次项系数为2n-1=64,n=7,
故展开式共有8项,
故选:C.

点评 本题主要考查二项式定理的应用,二项式系数的性质,注意各项系数和与各项的二项式系数和的区别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.半径为1的球内最大圆柱的体积为(  )
A.$\frac{2\sqrt{6}}{9}$πB.$\frac{\sqrt{3}}{4}$πC.$\frac{2\sqrt{3}}{3}$πD.$\frac{4\sqrt{3}}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知平面α∥平面β,AB与CD是两条异面直线且AB?α,CD?β,如果E、F、G分别是AC、CB、BD的中点.求证:平面EFG∥α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=2sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)+sin2x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为$\sqrt{3}$的正三角形,则椭圆方程为$\frac{{x}^{2}}{4+2\sqrt{3}}$+$\frac{{y}^{2}}{2\sqrt{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用一根长7.2米的木料,做成“日”字形的窗户框,要使窗户面积不超过1.8平方米,且木料无剩余,求窗户宽的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P1(x0,y0)为双曲线$\frac{{x}^{2}}{8{b}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b为正常数)上任一点,F2为双曲线的右焦点,过P作直线x=$\frac{8b}{3}$的垂线,垂足为A,连接F2A并延长交y轴于P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)设轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB,QD分别交y轴于M,N两点.求证:以MN为直径的圆过两定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC的内角A、B、C的对边分别为a、b、c,b=3,c=1,A=2B,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow a$=(1,2),$\overrightarrow{b}$=(1,-1),则2$\overrightarrow a$+$\overrightarrow{b}$与$\overrightarrow a$-$\overrightarrow{b}$的夹角等于(  )
A.-$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案