分析 (1)推导出DF$\underset{∥}{=}$EC1,从而四边形DFC1是平行四边形,进而C1F∥DE,由此能证明C1F∥平面BDE.
(2)连结AC、BD,交于点O,连结OE,则∠EOC是二面角A-BD-E的平面角的补角,由此能求出二面角A-BD-E的正切值.
解答
证明:(1)∵在棱长为a的正方体ABCD-A1B1C1D1中,
E,F分别是棱CC1与DD1的中点,
∴DF$\underset{∥}{=}$EC1,∴四边形DFC1是平行四边形,
∴C1F∥DE,
∵C1F?平面BDE,DE?平面BDE,
∴C1F∥平面BDE.
解:(2)连结AC、BD,交于点O,连结OE,
∵ABCD是正方形,∴CO⊥BD,
∵在棱长为a的正方体ABCD-A1B1C1D1中,E是棱CC1的中点,
∴CO=$\frac{1}{2}AC=\frac{1}{2}\sqrt{{a}^{2}+{a}^{2}}$=$\frac{\sqrt{2}a}{2}$,CE=$\frac{a}{2}$,BE=DE,
∴EO⊥BD,
∴∠EOC是二面角A-BD-E的平面角的补角,
∵tan∠EOC=$\frac{EC}{OC}$=$\frac{\frac{a}{2}}{\frac{\sqrt{2}a}{2}}$=$\frac{\sqrt{2}}{2}$,
∴二面角A-BD-E的正切值为-$\frac{\sqrt{2}}{2}$.
点评 本题考查线面平行的证明,考查二面角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com