精英家教网 > 高中数学 > 题目详情
2.已知定义在R上的函数f(x)的导函数为f′(x),满足f′(x)<f(x),若函数f(x)的图象关于直线x=2对称,且f(4)=1,则不等式f(x)<ex的解集为(0,+∞).

分析 构造函数h(x)=$\frac{f(x)}{{e}^{x}}$,根据函数的单调性求出不等式的解集即可.

解答 解:∵函数f(x)的图象关于直线x=2对称,
∴f(2+x)=f(2-x),
∴f(4)=f(0)=1;
设h(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),则h′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
又∵f′(x)-f(x)<0,
∴h′(x)<0;
∴y=h(x)单调递减,
而当x=0时,h(0)=$\frac{f(0)}{{e}^{0}}$=1;
不等式 f(x)<ex,即h(x)<h(0),
解得:x>0,
故不等式的解集为(0,+∞),
故答案为:(0,+∞).

点评 本题考查了函数的单调性问题,考查导数的应用,构造函数h(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x+y)+f(x-y)=2f(x)f(y)对一切实数x,y成立,且f(0)≠0,则函数f(x)是(  )
A.奇函数B.偶函数
C.既是奇函数,又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若n阶行列式D的每行的前n-1个元素之和为1,而后n-1个元素之和为3,求D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx-$\frac{1}{2}$x2+kx,其中a∈R,k∈R且a≠0.
(I)若k=0,讨论函数f(x)的单调性;
(Ⅱ)设a=1,若函数f(x)存在两个零点x1,x2(x1<x2),且x0=$\frac{{x}_{1}+{x}_{2}}{2}$,问:曲线y=f(x)在点x0处的切线能否与y轴垂直,若能,求出该切线的方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)求PD与平面EFD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(Ⅰ)求证:CE2=CD•CB.
(Ⅱ)若D为BC的中点,且BC=2$\sqrt{2}$,求AB与DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,△ABC为圆内接三角形,BD为圆的弦,且BD∥AC,过点A做圆的切线与DB的延长线交于点E,AD与BC交于点F,若AB=AC=4,BD=5,则$\frac{AF}{FD}$=$\frac{4}{5}$;AE=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F分别是棱CC1与DD1的中点
(1)证明:直线C1F∥平面BDE;
(2)求二面角A-BD-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线f(x)=ax2(a>0)与g(x)=lnx有两条公切线,则a的取值范围为(  )
A.(0,$\frac{1}{e}}$)B.(0,$\frac{1}{2e}}$)C.($\frac{1}{e}$,+∞)D.(${\frac{1}{2e}$,+∞)

查看答案和解析>>

同步练习册答案