精英家教网 > 高中数学 > 题目详情
已知
a
=(-
3
sinωx,cosωx),
b
=(cosωx,cosωx)(ω>0)
,令函数f(x)=
a
b
,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调区间.
分析:(1)可利用向量的坐标运算公式结合正弦与余弦的二倍角公式化简函数的表达式,由最小正周期为π即可求得ω的值;
(2)直接利用正弦函数的单调增区间于函数的单调减区间,即可求f(x)的单调区间.
解答:解:(1)f(x)=-
3
sinωxcosωx+cos2ωx=-
3
2
sin2ωx+
1
2
cos2ωx+
1
2
=-sin(2ωx-
π
6
)+
1
2

∵ω>0,∴T=
=π,
∴ω=1.
(2)由(1)可知f(x)=-sin(2x-
π
6
)+
1
2

∵2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈Z,
得kπ-
π
3
≤x≤kπ+
3
,k∈Z函数是减函数.
由2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈Z,
得kπ+
3
≤x≤kπ+
3
,k∈Z函数是增函数.
所以函数的单调减区间为[kπ-
π
3
,kπ+
3
],k∈Z.
函数的单调增区间为[kπ+
3
,kπ+
3
],k∈Z.
点评:本题考查平面向量数量积的运算,正弦函数的定义域和值域及正弦函数的单调性,着重考查正弦函数的图象与性质的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα=3sinα,则
sin3α-sin2αcosα+cos2αsinα
cos3α
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2cos
ωx
2
,2sin
ωx
2
),
b
=(sin
ωx
2
3
sin
ωx
2
),ω>0
,记函数f(x)=
a
b
-
3
4
|
a
|2
,且以π为最小正周期.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=
2
,f(A)=0,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
α
=(
3
sinωx,cosωx),
β
=(cosωx,cosωx)
,记函数f(x)=
α
β
,已知f(x)的周期为π.
(1)求正数ω之值;
(2)当x表示△ABC的内角B的度数,且△ABC三内角A、B、C满sin2B=sinA•sinC,试求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(-
3
sinωx,cosωx),
b
=(cosωx,cosωx)(ω>0)
,令函数f(x)=
a
b
,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案