精英家教网 > 高中数学 > 题目详情
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:

将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(1)b2012是数列{an}中的第    项;
(2)b2k-1=    .(用k表示)
(1)5030 (2)
由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…
故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….
从而由上述规律可猜想:b2k=a5k= (k为正整数),
b2k-1=a5k-1==,
故b2012=b2×1006=a5×1006=a5030,
即b2012是数列{an}中的第5030项.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度.公民在就业的第一年交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目a1,a2,…,an是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,…,以Tn表示到第n年所累计的储备金总额.
(1)写出Tn与Tn-1(n≥2)的递推关系式;
(2)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008.

(1)求数列{xn}的通项公式.
(2)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个通项公式yn,并证明你的结论.
(3)求zn=x1y1+x2y2+…+xnyn(n∈N*,n≤2008).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正项数列{an}满足-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(  )
A.90B.100C.145D.190

查看答案和解析>>

同步练习册答案