精英家教网 > 高中数学 > 题目详情

【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了勾股圆方图,又称赵爽弦图(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比赵爽弦图,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为(

A.B.

C.D.

【答案】D

【解析】

,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.

由题意,设,则,即小正六边形的边长为

所以,,在中,

由余弦定理得

,解得

所以,大正六边形的边长为

所以,小正六边形的面积为

大正六边形的面积为

所以,此点取自小正六边形的概率.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线是由两个定点和点的距离之积等于的所有点组成的,对于曲线,有下列四个结论:①曲线是轴对称图形;②曲线上所有的点都在单位圆内;③曲线是中心对称图形;④曲线上所有点的纵坐标.其中,所有正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,且焦点为F,直线l与抛物线相交于AB两点.

⑴求抛物线C的方程,并求其准线方程;

为坐标原点.,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于曲线,给出下列四个结论:

①曲线C关于原点对称,但不关于x轴、y轴对称;

②曲线C恰好经过4个整点(即横、纵坐标均为整数的点);

③曲线C上任意一点都不在圆的内部;

④曲线C上任意一点到原点的距离都不大于

其中,正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,若恰有一个零点,求实数的取值范围;

2)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地某所高中 2019 年的高考考生人数是 2016 年高考考生人数的 1.5 倍,为了更好地对比该校考生的升学情况,统计了该校 2016 年和 2019年的高考升学情况,得到柱图:

2016年高考数据统计 2019年高考数据统计

则下列结论正确的是(

A.2016年相比,2019年一本达线人数有所增加

B.2016年相比,2019年二本达线人数增加了0.5

C.2016年相比,2019年艺体达线人数相同

D.2016年相比,2019年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数),关于的不等式的解集中有且只有一个元素.

1)设数列的前项和),求数列的通项公式;

2)设),则数列中是否存在不同的三项能组成等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直线将矩形纸分为两个直角梯形,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是

图1 图2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的过程中,平面恒成立

D.在翻折的过程中,平面恒成立

查看答案和解析>>

同步练习册答案